2’D Non-Orthogonal Spline Wavelets and Schneider’s Leveldependent
Scheme for 3’D Boundary Elements Method
Key Words: matrix compression scheme, wavelet BEM, 2’D Non-orthogonal wavelet
ABSTRACT: 2’D Non-orthogonal spline wavelets are used as basis function in boundary elements
method(BEM).This kind of wavelet has compact supports and closed-formed expression that have been
proposed by authors. Besides one can choose the vanishing moments of the wavelets Independently of the order
of B-splines. The adaptive meshing for boundary elements makes it possible to reduce the degree of freedom
(DOF) required for a specified accuracy. Sparse coefficient matrices are obtained by truncating the small
elements a priori. The level-dependent schemes enable us to reduce the matrix entries. In the present paper we
investigate the matrix truncation using Schneider’s level-dependent algorithm. The level-dependent truncation
schemes select the truncated entries by comparing the predetermined threshold with the distance between the
supports of two basis function. Through numerical examples, the efficiency of compression scheme together with
Non-orthogonal surface wavelet is investigated.
Clic Image To Download Full Journal
0 comments:
Post a Comment